IEPD Template
This template was used by the Data Aggregation Pilot team to build their IEPD. Some of the steps and files in this document are specific to our pilot and may not be relevant to all users. The NIEM Program Management Office will soon release a standard NIEM IEPD template that is designed to establish a consistent set of activities and standards for IEPDs. For NIEM’s current guidance on creating an IEPD, see the NIEM Model Package Description.

If you have technical questions or need help, you can contact the National Information Sharing Standards Help Desk. For all other inquiries about NIEM or the NIEM website, contact information@niem.gov.
IEPD Review Worksheet

IEPD Name:

Organization/Component Owner:
IEPD Primary Point of Contact:
POC Contact Information:
Date Initially Submitted to EDMO:
Reviewed by:
Date Feedback Provided:
	Guidance
	Acceptance Criteria
	Comments

	Review document submissions and verify all required artifacts are included in the documents.

	1. Folder Structure

	· Schema Files:

· /iepd_name/ver X/ver X.Y/Schemas/

· /iepd_name/ver X/ver X.Y/Schemas/Exchange/

· /iepd_name/ver X/ver X.Y/Schemas/Extension/
· /iepd_name/ver X/ver X.Y/Schemas/Subset/

· /iepd_name/ver X/ver X.Y/Schemas/Constraint/
· /iepd_name/ver X/ver X.Y/Schemas/Sample XML Instances/

· Documentation:

· /iepd_name/ver X/ver X.Y/Documentation/Master Documents
· /iepd_name/ver X/ver X.Y/Documentation/Change Log

· /iepd_name/ver X/ver X.Y/Documentation/Mapping Templates

· /iepd_name/ver X/ver X.Y/Documentation/Models
· /iepd_name/ver X/ver X.Y/Documentation/MOU-Endorsements
· /iepd_name/ver X/ver X.Y/Documentation/Supporting Documentation/

· Metadata:

· /iepd_name/ver X/ver X.Y/Metadata/

· Catalog:

· /iepd_name/ver X/ver X.Y/Catalog/
	

	2. Main Document
	· Included in the /iepd_name/ver X/ver X.Y/Documentation/Master Documents folder
· Filename is formatted as: ‘iepd_name–Main Document.doc’
· Required sections (listed below) are included either within one word document (preferred) or broken out separately but stored in the folder structure identified above.

· Executive Summary

i. Executive level overview of the exchange

ii. Purpose of the IEPD

iii. Overview of the IEPD development process

iv. Business value gained by the IEPD

v. Comments on how the IEPD can and is being reused

· Exchange Overview
i. Overview of the information exchange
ii. Which Organization are sharing information
· Use Cases (no prescribed format)

· Business Requirements (no prescribed format)
· Business Rules (no prescribed format)
· Business Processes
i. Textual description of business scenario(s) where and how the information exchange is used – aligns with description of the exchange overview
ii. Scenario Diagram
· Domain Model

i. Embedded in the Main Document (even if in a separate document)
ii. Structured to meet the specifications of a UML Class Diagram
(More information about class diagrams can be found at: http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/)
iii. Follows guidelines defined in NIEM training

iv. Cardinalities are represented

v. Correct association types are used
· Tools and Methodologies
i. Narrative describing the process and tools used to build the IEPD
· Metadata

i. All required fields in table are complete
ii. Copy of metadata.xml is included
· IEPD Catalog
i. Copy of IEPD Catalog is included and uses relative links
	

	3. Component Mapping Template
	· Included in the /iepd_name/ver X/ver X.Y/Documentation/Mapping Templates folder
· Filename is formatted as: ‘iepd_name–CMT’
· All elements and objects in the domain model are represented in the CMT
· The required columns (as specified in the template) for the NIEM Mapping and Facet tabs are complete.
· The absolute path (XPath) for the Target Data Elements is included.
Ex: Person/PersonName/PersonGivenName
(XPath is a language for finding information in an XML document. XPath is used to navigate through elements and attributes in an XML document. For additional information about XPath refer to: www.w3schools.com/xpath/default.asp)
· All of the objects and elements included as part of the CMT have been mapped to the best possible match within NIEM (Use Wayfarer, SSGT or any search tool to browse NIEM)
	

	4. Domain Model
	· Included in the /iepd_name/ver X/ver X.Y/Documentation/Models folder
· Filename is formatted as: ‘iepd_name–DomainModel’

· Image file included (ex: jpg, gif, png, etc.)
· Model file included (modeling tool file type)

· Meets specifications of a UML Class Diagram

(More information about class diagrams can be found at: http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/)
· Follows guidelines defined in NIEM training

· Cardinalities are represented

· Correct association types are used
	

	5. IEPD Catalog
	· Included in the /iepd_name/ver X/ver X.Y/Catalog folder
· Includes a definition of the exchange

· Must be an html file with links to each of the artifacts included as part of the IEPD package
· Uses relative links for each artifact
(Relative links specify the path to an IEPD artifact in relation to the Catalog’s location. Catalog links should avoid specifying a full path that points to a fixed file location that may be inaccessible to the user.)
	

	6. Metadata
	· Included in the /iepd_name/ver X/ver X.Y/Metadata folder
· Filename is formatted as: ‘iepd_name-metadata.xml’
· All the required metadata tags must be populated

· At minimum, must validate against provided metadata.xsd. If more metadata is available, metadata.xsd maybe extended to meet specific Component needs
	

	7. Schemas
(If there is a question regarding the NDR conformance of the schemas, please refer to Appendix A for a list of the NDR Rules)
	· Wantlist
· Included in the /iepd_name/ver X/ver X.Y/Schemas/Subset/ folder

· Filename is formatted as: wantlist.xml

· Compare against the CMT to ensure all elements mapped to NIEM in CMT are included here
· Validate against the Subset Schema using XML validation tool
· Subset
· Included in the /iepd_name/ver X/ver X.Y/Schemas/Subset/ folder

· Exchange Schema
· Included in the /iepd_name/ver X/ver X.Y/Schemas/Exchange/ folder

· Filename is formatted as: ‘iepd_name-x.xsd’
· Compare against the CMT to ensure that the same objects/elements are represented in both and are mapped the same way

· Make sure it validates against the provided subset schema using any XML validation tool

· Extension Schema
· Included in the /iepd_name/ver X/ver X.Y/Schemas/Extension/ folder

· Filename is formatted as: ‘iepd_name-e.xsd’
· Compare against the CMT to ensure that the same objects/elements are represented in both and are mapped the same way

· Make sure it validates against the provided subset schema using any XML validation tool
· Constraint Schema

· Included in the /iepd_name/ver X/ver X.Y/Schemas/Constraint/ folder

· Review business rules and determine which are able to be validated through XML schemas. Make sure these are accurately represented in the constraint schema.
· Sample XML instance
· Included in the /iepd_name/ver X/ver X.Y/Schemas/Sample XML Instances/ folder

· Validates against the extension and exchange schema
· XML Stylesheet

· Included in the /iepd_name/ver X/ver X.Y/Schemas/Sample XML Instances/ folder
· Generic stylesheet is included in IEPD template package that can be used for any sample instances.
	

Appendix A: NDR Guidelines for NIEM Schema Development

	Rule
	Rule Definition
	Classification

	Relation to Standards

	5-1
	The schema MUST conform to XML, as specified by [XML]
	XML 1.0

	5-2
	The schema MUST conform to the specification for namespaces in XML, as defined by [XML Namespaces]
	XML Namespaces

	5-3
	The schemas MUST conform to the W3C XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema
Part 2: Datatypes as specified by [XML Schema Structures]and [XML Datatypes]
	XML Schema

	5-4
	Within a NIEM-conformant schema, the data definition provided for each documented component SHALL follow the requirements and recommendations for data definitions given by [ISO 11179 Part 4]
 - Be stated in singular
 - State what the concept is, not only what it is not
 - Be stated as a descriptive phrase or sentence(s)
 - Contain only commonly understood abbreviations
 - Be expressed without embedding definitions of other data or underlying concepts
	ISO 11179 Part 4

	5-5
	A NIEM component name SHALL be formed by applying the informative guidelines detailed in [ISO 11179 Part 5], with exceptions of naming rules
	ISO 11179 Part 5

	Rule
	Rule Definition
	Classification

	XML Schema Design Rules

	Restrictions on XML Schema Constructs

	6-1
	Within the schema, an element declaration that is of complex content SHALL NOT own the attribute mixed with the value of true
	No Mixed Content

	6-2
	Within the schema, an element xsd:ComplexType SHALL NOT own the attribute mixed with the value of true
	

	6-3
	The schema SHALL NOT contain a reference to the type definition xsd:notation or to a type derived from that type
	No Notations

	6-4
	The schema SHALL NOT contain the element xsd:notation
	

	6-5
	The schema SHALL NOT contain the element xsd:include
	No Schema Inclusion

	6-6
	The schema SHALL NOT contain the element xsd:redefine
	No Schema Redefinitions

	6-7
	The schema SHALL NOT reference the type xsd:anyType
	Wildcard Restrictions - No Unconstrained Type Substitution

	6-8
	The schema SHALL NOT reference the type xsd:anySimpleType
	Wildcard Restrictions - No Unconstrained Text Substitution

	6-9
	Within the schema, an element declaration with the attribute name and without the attribute type MUST carry the attribute abstract with the value true
	Wildcard Restrictions - Untyped Elements Must be Abstract

	6-10
	Within the schema, an attribute declaration with attribute name MUST carry the attribute type
	Wildcard Restrictions - No Untyped Attributes

	6-11
	The schema SHALL NOT contain the element xsd:any
	Wildcard Restrictions - No Unconstrained Element Substitution

	6-12
	The schema SHALL NOT contain the element xsd:anyAttribute
	Wildcard Restrictions - No Unconstrained Attribute Substitution

	6-13
	Within the schema, any type definition MUST appear as an immediate child of the document element xsd:schema
	Component Naming Restrictions - No Annonymous Type Definitions

	6-14
	Within the schema, any element declaration carrying the attribute name MUST appear as an immediate child of the document element xsd:schema
	Component Naming Restrictions - No Local Element Declarations

	6-15
	Within the schema, any element declaration owning the attribute name MUST appear as an immediate child of the document element xsd:schema
	Component Naming Restrictions - No Local Attribute Definitions

	6-16
	The schema SHALL NOT contain any of the elements xsd:unique, xsd:key, xsd:keyref, xsd:selector or xsd:field
	No Uniqueness Constraints

	6-17
	The schema SHALL NOT contain the element xsd:all
	Model Group Restrictions - Restrictions on Particle Ordering

	6-18
	The schema SHALL NOT contain the element xsd:choice
	

	6-19
	Within the schema, any immediate child of the model group xsd:sequence element MUST be one of xsd:annotation or xsd:element
	Model Group Restrictions - No Recursively Defined Model Groups

	6-20
	Within the schema, any immediate child of the model group xsd:sequence element MUST be one of the xsd:annotation, xsd:element, xsd:choice or xsd:any
	

	6-21
	Within the schema, any immediate child of the model group xsd:choice element MUST be one of xsd:annotation or xsd:element
	

	6-22
	The use of xsd:choice SHALL define syntax, structure, grouping and cardinality of instances, but SHALL NOT define semantics. The semantics of a property within an xsd:choice SHALL be identical to the semantics of the property within an xsd:sequence
	

	6-23
	The schema SHALL NOT contain the element xsd:group
	Model Group Restrictions - Restrictions on Named Groups

	6-24
	Within the schema, if the element xsd:sequence carries the attribute minOccurs, it MUST set the value for the attribute to 1
	Model Group Restrictions - Particle Cardinality Restrictions

	6-25
	Within the schema, if the element xsd:sequence carries the attribute maxOccurs, it MUST set the value for the attribute to 1
	

	6-26
	Within the schema, if an element declaration carries the attribute block, it MUST be set to the value for the attribute to the empty string
	Block Substitution Restrictions

	6-27
	Within the schema, if a complex type declaration carries the attribute block, it MUST be set to the value for the attribute to the empty string
	

	6-28
	Within the schema, if the document element xsd:schema carries the attribute blockDefault, it MUST set the value for the attribute to empty string
	

	6-29
	Within the schema, if a simple type definition carries the attribute final, it MUST set the value for the attribute to the empty string
	Final Value Restrictions

	6-30
	Within the schema, if a compled type definition carries the attribute final, it MUST set the value for the attribute to the empty string
	

	6-31
	Within the schema, if an element carries the attribute final, it MUST set the value for the attribute to the empty string
	

	6-32
	Within the schema, if the document element xsd:schema carries the attribute finalDefault, it MUST set the value for that attribute to the empty string
	

	6-33
	Within the schema, any element xsd:element SHALL NOT carry the attribute default
	Default Value Restrictions

	6-34
	Within the schema, any element xsd:attribute SHALL NOT carry the attribute default
	

	6-35
	The schema SHALL NOT contain the element xsd:list
	Simple Type Derivation Restrictions - No Lists of Simple Type

	6-36
	The schema SHALL NOT contain the element xsd:union
	Simple Type Derivation Restrictions - No Unions of Simple Type

	xsd:schema Document Element

	6-37
	Within the schema, the document element xsd:schema MUST carry the attribute targetNamespace
	xsd:schema Document Element

	6-38
	Within the schema, the value of the required attribute targetNamespace on the document element xsd:schema MUST match the production <absolute-URI> as defined by [RFC3986]
	

	6-39
	Within the schema, the document element xsd:schema MUST carry the attribute version
	

	6-40
	Within the schema, the value required attribute version on the document element xsd:schema MUST NOT be an empty string
	

	Namespace Imports

	6-41
	Within the schema, the element xsd:import MUST carry the attribute namespace
	xsd:import Element Restrictions

	6-42
	Within the schema, the value of the required attribute namespace owned by the element xsd:import MUST match the production <absolute-URI> as defined by [RFC3986]
	

	6-43
	Within the schema, the element xsd:import MUST carry the attribute schemaLocation
	

	6-44
	Within the schema, the value of the required attribute schemaLocation carried by the element xsd:import MUST match either the production <absolute-URI> or the definition of 'relative-path reference' as defined by [RFC3986]
	

	6-45
	Within the schema, the value of the required attribute schemaLocation carried by the element xsd:import MUST be resolvable to a XML schema document file that is valid according to [XML Schema Structures] and [XML Schema Datatypes]
	

	6-46
	Within the schema, when a namespace other than the XML namespace or the XML Schema namespace is used, it MUST be imported into the schema using the xsd:import element
	Including XML Content from Other Namespaces

	6-47
	Within the schema, when a namespace other than the XML namespace or the XML Schema namespace is used, its content MUST valid with respect to the schema imported for that namespace
	

	Annotations

	6-48
	Within the schema, an element SHALL have at most one instance of an element xsd:annotation as an immediate child
	Annotations

	6-49
	Within the schema, the content of the xsd:documentation element that constitutes the data definition of a component MUST be character information items as specified by [XMLInfoSet]
	Human-Readable Documentation

	6-50
	XML components SHALL not be used for persistent information about constructs wtihin the schema
	

	6-51
	Within the schema, any immediate child of an xsd:appinfo element SHALL be an element information item or a comment information item
	Machine-Readable Annotations

	6-52
	Within the schema, any element that is an immediate child of an xsd:appinfo element SHALL be in a namespace
	

	6-53
	Within the schema, an element in the XML Schema namespace MUST NOT occur as a descendant of any element xsd:appinfo
	

	Type Definitions

	6-54
	Within the schema, the element xsd:simpleType MUST have the element xsd:restriction as an immediate child
	Simple Type Definitions

	6-55
	Within the schema, the element xsd:complexType MUST have as an immediate child either the element xsd:complexContent or the element xsd:simpleContent
	Complex Type Definitions

	6-56
	Within the schema, the element xsd:simpleContent MUST have an immediate child element xsd:extension
	Simple Content Restrictions

	6-57
	Within the schema, given an element xsd:simpleContent with a child xsd:extension owning an attribute base, if the attribute base has a value that resolves to the name of the simple type, then the element xsd:extension MUST have an immediate child element xsd:attributeGroup
	

	6-58
	Within the schema, the element xsd:complexContent MUST have as an immediate child the element xsd:extension
	Complex Content Restrictions

	6-59
	Within the schema, given an element xsd:complexContent with a child xsd:extension owning the attribute base, the attribute base MUST have a value that resolves to the name of one of:
 - the type structures:ComplexObjectType,
 - the type structures:MetadataType,
 - the type structures:AugmentationType, or
 - a complex type that is a NIEM-conformant component
	

	6-60
	Within the schema, given an element xsd:complexContent with a child xsd:restriction owning an attribute base, the attribute base MUST have a value that resolves to the name of a complex type that is a NIEM-conformant component
	

	Additional Definitions and Declarations

	6-61
	Within the schema, any occurrence of the element xsd:attributeGroup MUST own an attribute ref
	Attribute Group Definitions

	6-62
	Within the schema, the attribute ref owned by any element xsd:attributeGroup MUST have a value of a qualified name that SHALL resolve to the namespace for the NIEM structures namespace and the local name SimpleObjectAttributeGroup
	

	Rule
	Rule Definition
	Classification

	Modeling Rules

	xsd:schema Document Element Restrictions

	7-1
	Within the schema, the document element xsd:schema MUST have application
information appinfo:ConformantIndicator, with text content "true".
	xsd:schema Document Element Restrictions

	7-2
	Two XML Schema documentsSHALL have the same value for attribute
targetNamespace carried by the element xsd:schema,if and only if they
represent the same set of components.
	

	7-3
	Two XML Schema documents SHALL have the same value for attribute
targetNamespace carried by the element xsd:schema, and different values for
attribute version carried by the element xsd:schema if and only if they are
different views of the same set of components.
	

	Annotations

	7-4
	Within the schema, any element xsd:complexType MUST be a documented
component.
	Human Readable Documentation

	7-5
	Within the schema, any element xsd:simpleType MUST be a documented
component.
	

	7-6
	Within the schema, any element xsd:element that is an immediate child of an
element xsd:schema MUST be a documented component.
	

	7-7
	Within the schema, any element xsd:attribute that is an immediate child of an
element xsd:schemaMUST be a documented component.
	

	7-8
	Within the schema, any element xsd:enumeration MUST be a documented
component.
	

	7-9
	Within the schema, the document element xsd:schema MUST be a documented
component.
	

	7-10
	Words or synonyms for the words within a data element definition SHALL NOT be reused
as terms in the corresponding component name if those words dilute the semantics and
understanding of, or impart ambiguity to, the entity or concept that the component
represents.
	

	7-11
	An object class SHALL have one and only one associated semantic meaning (i.e., a single
word sense) as described in the definition of the component that represents that object
class.
	

	7-12
	An object class SHALL NOT be redefined within the definitions of the components that
represent properties or subparts of that entity or class.
	

	7-13
	A data definition SHALL NOT contain explicit representational or data typing information
such as number characters, type of characters, etc., unless the very nature of the
component can be described only by such information.
	

	7-14
	A component definition SHALL begin with a standard opening phrase that depends on
the class of the component per Table 7-1: Standard Opening Phrases
	

	7-15
	The schema SHALL import the appinfo namespace.
	Machine Readable Documentation

	7-16
	A component that is deprecated SHALL be indicated as such by the component having
application information appinfo:Deprecated, with an attribute value with a
value of true.
	Machine Readable Documentation - Deprecation

	7-17
	Within the schema, the element appinfo:Base MAY be used in one of the following ways:
1. By a type definition, to indicate the base type, or structures:Object or structures:Association.
2. By an element declaration, to indicate the base element. The element appinfo:Base SHALL NOT be used for any other purpose.
	Machine Readable Documentation - Bases of Derived Components

	7-18
	Within the schema, the element appinfo:Base SHALL indicate, by namespace and name, one of the following:
1. ANIEM-conformant schema component.
2. structures:Object.
3. structures:Association.
	

	7-19
	Within the schema, an attribute appinfo:namespace owned by an element appinfo:Base SHALL have a value of either of the following:
1. Anamespace which is the target namespace of a NIEM-conformant schema.
2. The structures namespace.
	

	7-20
	Within the schema, an element appinfo:Base that does not own an attribute
appinfo:namespace SHALL refer to the target namespace of the schema in which it
is used.
	

	7-21
	Within the schema, an element appinfo:Base SHALL own an attribute
appinfo:name.
	

	7-22
	Within the schema, if an element appinfo:Base indicates a NIEM-conformant
namespace, then the value of the attribute appinfo:name owned by the element
appinfo:Base SHALL indicate a schema component in the indicated namespace.
	

	7-23
	Within the schema, if an element appinfo:Base indicates the structures namespace, then the value of the attribute appinfo:name owned by the element appinfo:Base SHALL have a value of one of the following:
1. structures:Object.
2. structures:Association.
3. Aschema component defined by the structures schema.
	

	7-24
	Within the schema, the element appinfo:AppliesTo MAY be used in any of the following ways:
1. To indicate a base type to which an augmentation may be applied.
2. To indicate a base type to which a metadata type may be applied. The element appinfo:AppliesTo SHALL NOT be used for any other purpose.
	Machine Readable Documentation - Application of Constructs

	7-25
	Within the schema, the element appinfo:AppliesTo SHALL indicate a schema
component by namespace and name.
	

	7-26
	Within the schema, an attribute appinfo:namespace owned by an element
appinfo:AppliesTo SHALL indicate the namespace of the type to which
appinfo:AppliesTo refers. The indicated namespace SHALL be defined by a NIEM-
conformant schema.
	

	7-27
	Given that the element appinfo:AppliesTo refers to a type, the applicability
described by the element SHALL be understood to be the indicated type or a type
transitively derived from the indicated type.
	

	7-28
	Within the schema, an element appinfo:AppliesTo that does not carry an attribute
appinfo:namespace SHALL refer to the target namespace of the schema in which it
is used.
	

	7-29
	Within the schema, an element appinfo:AppliesTo SHALL carry an attribute
appinfo:name. The value of this attribute SHALL indicate the local name of a schema
component within the namespace specified by the element.
	

	7-30
	Within the schema, the element appinfo:ReferenceTarget SHALL identify the
XML Schema type definition of an element information item to which an instance of a
reference element may validly refer. The element appinfo:ReferenceTarget
SHALL NOT be used for any other purpose.
	Machine Readable Documentation - Targets of References

	7-31
	Within the schema, a reference element MUST have at most one instance of the
element appinfo:ReferenceTarget.
	

	7-32
	Within the schema, the element appinfo:ReferenceTarget SHALL indicate a
type definition schema component, by namespace and name.
	

	7-33
	Within the schema, an attribute appinfo:namespace carried by an element
appinfo:ReferenceTarget SHALL indicate the namespace of the referenced
schema component. The indicated namespace SHALL be defined by a reference or
extension schema.
	

	7-34
	Within the schema, an element appinfo:ReferenceTargetthat does not carry an
attribute appinfo:namespace SHALL refer to the target namespace of the schema
in which it is used.
	

	7-35
	Within the schema, an element appinfo:ReferenceTarget SHALL carry an
attribute appinfo:name. The value of this attribute SHALL indicate the local name of
a type definition schema component within the namespace specified by the element.
	

	Simple Type Definitions

	7-36
	Within the schema, a simple type definition that uses xsd:list SHOULD NOT be
defined if any member of the list requires a property or metadata that is different than
other members of the list. All members of the list SHOULD have the same metadata,
and should be related via the same properties.
	Simple Type Defintions

	Complex Type Definitions

	7-37
	Within the schema, a complex type definition SHALL be one of the following classes of types:
1. An object type.
2. A role type.
3. An association type.
4. A metadata type.
5. An augmentation type.
6. An adapter type.
	Complex Type Definitions

	7-38
	Within the schema, an element MUST NOT be introduced more than once into the direct content of a type definition. This applies to content acquired through extension of base types. This does not apply to a base element or derived element to one previously existing in the type definition.
	

	7-39
	Within the schema, an object type SHALL be a complex type definition that either constitutes a NIEM-conformant component or for which there exists a NIEM-conformant component of one of the following forms:
1. Has simple content, is based on a simple type, and contains the attribute group structures:SimpleObjectAttributeGroup, and has application information appinfo:Base of structures:Object.
2. Has complex content, and is based on complex type structures:ComplexObjectType, and has application information appinfo:Base of structures:Object.
3. Is a complex type that is derived from an object type, which is defined according to this rule.
	Complex Type Definitions - Object Types

	7-40
	Within the schema, any element with a name beginning with the string RoleOf SHALL
represent a base type, of which the containing type represents a role.
	Complex Type Definitions - Role Types

	7-41
	Within the schema, an association type SHALL be a complex type definition that either constitutes a NIEM-conformant component or for which there exists a NIEM-conformant
component definition. The NIEM-conformant component definition SHALL have one of the following forms:
1. Has complex content, is based on the complex type structures:ComplexObjectType, and has application information appinfo:Base of structures:Association.
2. Is a complex type that is derived from an association type, which is defined according to this rule.
	Complex Type Definitions - Association Types

	7-42
	Given that an association type defines a relationship between a set of participants,
within an association type definition, any element that represents a participant SHALL
be a reference element.
	

	7-43
	Within the schema, a metadata type SHALL contain elements appropriate for a specific
class of data about data.
	Complex Type Definitions - Metadata Types

	7-44
	Within the schema, a metadata type and only a metadata type SHALL be derived directly from structures:MetadataType.
	

	7-45
	Within the schema, a metadata type MAY have application information
appinfo:AppliesTo,indicating the NIEM-conformant object, association, or
external adapter types to which the metadata applies.
	

	7-46
	Within the schema, a metadata type that does not have application information
appinfo:AppliesTo MAY be applied to any object type, association type, or
external adapter type.
	

	7-47
	An augmentation type:
1. SHALL be transitively derived from structures:AugmentationType.
2. SHALL contain elements that represent properties to be applied to a base type.
	Complex Type Definitions - Augmentation Types

	7-48
	Within the schema, an augmentation element definition:
1. SHALL have a type thatis an augmentation type.
2. SHALL use the substitutionGroup attribute such that it is transitively substitutable for the element structures:Augmentation.
 An element that is not an augmentation element SHALL NOT meet either of the above
criteria.
	

	7-49
	Within the schema, an element definition for an augmentation element MAY contain
one or more instances of the element structures:AppliesTo as application
information to specify types to which the augmentation element applies.
	

	7-50
	Within the schema, an element definition for an augmentation element that does not
contain any instances of the element structures:AppliesTo MAY be applied to
any object or association type.
	

	Component Usage

	7-51
	Any type definition referenced by a component within the schema MUST be from one of the following:
1. The schema being defined.
2. A namespace imported as NIEM-conformant.
3. The XML Schema namespace.
4. The structures namespace.
	Component Usage

	7-52
	Any element declaration referenced by a component within the schema MUST be from one of the following:
1. The schema being defined.
2. A namespace imported as NIEM-conformant.
3. The structures namespace.
4. An external namespace, in accordance with the rules for external schemas as specified by this specification.
	

	7-53
	Any attribute declaration referenced by a component within the schema MUST be from one of the following:
1. The schema being defined.
2. A namespace imported as NIEM-conformant.
3. The structures namespace.
4. The XML namespace.
5. An external namespace, in accordance with the rules for external schemas as specified by this specification.
	

	NIEM Structural Facilities

	7-54
	The schema MUST import the NIEM structures namespace.
	NIEM Structural Facilities

	7-55
	The schema or instance MUST use content within the NIEM structures namespace
as specified in this document and ONLY as specified by this document.
	

	7-56
	Within the schema, a complex type definition SHALL include the attribute
structures:sequenceID if the order of an occurrence of the type, within its
parent, relative to its siblings, is meaningful and pertinent and if the schema does not
specify the desired sequential order.
	Sequence ID

	7-57
	Within the schema, a reference element and only a reference element SHALL be defined to be of type structures:ReferenceType.
	Reference Elements

	7-58
	Within the schema, a complex type SHALL NOT be defined such that an instance of that type owns the attribute structures:ref.
	

	7-59
	Within the schema, any two elements of the form NCName and NCNameReference, where the string value of NCName is the same in both forms, SHALL be defined to have identical semantics. NIEM recognizes no difference in meaning between a reference element and an element that is not a reference element.
	

	7-60
	Within the schema, if both elements NCName and NCNameReference exist, then the
appinfo:ReferenceTarget of any NCNameReference element MUST be the
type of the element NCName.
	

	Using External Schemas

	7-61
	Within the schema, an element xsd:import that imports a namespace defined by an
external schema MUST have the application information
appinfo:ConformantIndicator, with a value of false.
	Using External Schemas

	7-62
	Within the schema, an element xsd:import that imports a namespace defined by an
external schema MUST be a documented component.
	

	7-63
	Within the schema, an adapter type MUST have application information
appinfo:ExternalAdapterTypeIndicator with a value of true. A type
that is not an adapter type SHALL NOT contain that indicator.
	

	7-64
	Within the schema, an adapter type MUST be an immediate extension of type
structures:ComplexObjectType.
	

	7-65
	Within the schema, an adapter type MUST be composed of only elements and attributes from an external standard.
	

	7-66
	Within the schema, an element reference used in an adapter type definition MUST be a documented component.
	

	7-67
	Within the schema, an attribute reference used in an adapter type definition MUST be a documented component.
	

	7-68
	Within the schema, an adapter type MUST NOT be extended or restricted.
	

	NIEM Subset Schemas

	7-69
	The value of the targetNamespace attribute owned by the xsd:schema document
element of the subset schema must be the same as the value of the
targetNamespace attribute owned by the xsd:schema document element of the
reference schema.
	NIEM Subset Schemas

	7-70
	The schema must be constructed such that any instance that is XML Schema valid against the schema must also be XML Schema valid against the base schema.
	

	Rule
	Rule Definition
	Classification

	XML Instance Rules

	8-1
	TheXML document MUST be schema-valid, assessed with reference to the schema
composed of the reference schemas, extension schemas, exchange schemas, utility
schemas, and external schemas for the relevant namespaces.
	Instance Validation

	8-2
	Within the instance, the meaning of an element with no content is that additional properties are not asserted. There SHALL NOT be additional meaning interpreted for an element with no content.
	Instance Meaning

	8-3
	Within an element instance, there SHALL NOT be any difference in meaning between a property asserted via element containment and a property asserted by element reference, except as explicitly described by the semantics of the elements involved.
	Component Representation

	8-4
	Given that the IDREF that is the value of an attribute structures:ref matches the
value of an ID attribute on some element in the XML document, that ID attribute must
be an occurrence of the attribute structures:id.
	

	8-5
	Within an element instance, given that a reference element is restricted to a target type T, any attribute structures:ref MUST reference an element that has a type definition of type T or that is derived from type T.
	

	8-6
	The order of elements that are children of an element SHALL be presented as if their sequential order is as follows:
1. First, elements owning an attribute structures:sequenceID, in the order that would be yielded with their sequence IDs sorted via sort element as defined by [XSLT], with a data type of number and an order of ascending.
 2. Following those elements, the remaining elements, in the order in which they occur within the XML instance.
	Component Ordering

	8-7
	Within a schema or instance, the attribute structures:sequenceID SHALL NOT be interpreted as meaningful beyond an indicator of sequential order of an object relative to its siblings.
	

	8-8
	Within an element instance, when an object O links to a metadata object via an attribute structures:metadata, the information in the metadata object SHALL be applied to the object O.
	Instance Metadata

	8-9
	Within an element instance, when an object O1 contains an element E, with content
object O2 or with a reference to object O2, and O2 links to a metadata object via an
attribute structures:linkMetadata, the information in the metadata object
SHALL be applied to the relationship E between O1 and O2.
	

	8-10
	Given that each IDREF in the value of an attribute structures:metadatamust
match the value of an ID attribute on some element in the XML document, that ID
attribute MUST be an occurrence of the attribute structures:id.
	

	8-11
	Each element that an attribute structures:metadata references MUST have a
type definition that is derived from structures:MetadataType.
	

	8-12
	Given that each IDREF in the value of an attribute structures:linkMetadatamust match the value of an ID attribute on some element in the XML document, that ID attribute MUST be an occurrence of the attribute
structures:id.
	

	8-13
	Each element that an attribute structures:linkMetadata references MUST have
a type definition that is derived from structures:MetadataType.
	

	8-14
	Given that an element information item E has a type definition of some type T, each metadata type that is the type definition of an element information item referenced by an attribute structures:metadata or structures:linkMetadata on
element E MUST be applicable to T.
	

	Rule
	Rule Definition
	Classification

	Naming Rules

	9-1
	Within the schema, a complex type that is a direct extension of a simple type from the XML Schema namespace simple type MAY use the same local name as the simple type if and only if the extension adds no content other than the attribute group
structures:SimpleObjectAttributeGroup.
	Extension of XSD Namespace Simple Types

	9-2
	The name of any XML Schema component defined by the schema SHALL be composed of words from the English language, using the prevalent U.S. spelling, as provided by [OED].
	Usage of English

	9-3
	The name of any XML Schema component defined by the schema SHALL contain only the following characters:
• Upper-case letters ('A'-'Z').
• Lower-case letters ('a'-'z').
• Digits ('0'-'9').
• Hyphen ('-').
Other characters, such as the underscore ('_') character and the period ('.') character
SHALL NOT appear in component names in NIEM-conformant schemas.
	Characters in Names

	9-4
	The hyphen character ('-') MAY appear in component names only when used as a
separator between parts of a single word, phrase, or value, which would otherwise be
incomprehensible without the use of a separator.
	

	9-5
	Within the schema, any attribute declaration SHALL have a name that begins with a
lower-case letter ('a'-'z').
	Character Case

	9-6
	Within the schema, any XML Schema component other than an attribute declaration
SHALL have a name that begins with an upper-case letter ('A'-'Z').
	

	9-7
	The name of any XML Schema component defined by the schema SHALL use the camel
case formatting convention.
	

	9-8
	The schema MUST consistently use approved acronyms, abbreviations, and word truncations within defined names. The approved shortened forms are defined in Table 9-1: Abbreviations Used in NIEM Core Names.
	Use of Acronyms and Abbreviations

	9-9
	A noun used as a term in the name of an XML Schema component MUST be in singular
form unless the concept itself is plural.
	Word Forms

	9-10
	A verb used as a term in the name of an XML Schema component MUST be used in the
present tense unless the concept itself is past tense.
	

	9-11
	Articles, conjunctions, and prepositions SHALL NOT be used in NIEM component names except where they are required for clarity or by standard convention.
	

	9-12
	Except as specified elsewhere in this document, any element or attribute defined within the schema SHALL have a name that takes the form:
• Object-class qualifier terms (0 or more).
• An object class term (1).
• Property qualifier terms (0 or more).
• Aproperty term (1).
• Representation qualifier terms (0 or more).
• Arepresentation term (1).
	Name Generation

	9-13
	The object-class term of a NIEM component SHALL consist of a term identifying a
category of concrete concepts or entities.
	Object-Class Term

	9-14
	A property term SHALL describe or represent a characteristic or subpart of an entity or
concept.
	Property Term

	9-15
	Multiple qualifier terms MAY be used within a component name as necessary to ensure clarity and uniqueness within its namespace and usage context.
	Qualifier Terms

	9-16
	The number of qualifier terms SHOULD be limited to the absolute minimum required to make the component name unique and understandable.
	

	9-17
	The order of qualifiers SHALL NOT be used to differentiate names.
	

	9-18
	If any word in the representation term is redundant with any word in the property term, one occurrence SHOULD be deleted.
	Representation Term

	9-19
	Within the schema, the name of an element declaration that is of simple content MUST use a representation term found in Table 9-2: Representation Terms.
	

	9-20
	Within the schema, the name of an element declaration that is of complex content, and that corresponds to a concept listed in Table 9-2: Representation Terms, MUST use a representation term from that table.
	

	9-21
	Within the schema, the name of an element declaration that is of complex content and that does not correspond to a concept listed in Table 9-2: Representation Terms MUST NOT use a representation term.
	

	9-22
	Within the schema, the name of an attribute declaration MUST use a representation term from Table 9-2: Representation Terms.
	

	9-23
	Within the schema, the name of any type definition MUST use the representation term Type.
	NIEM Type Names - All Type Components

	9-24
	Within the schema, the name of any simple type definition SHALL use the representation term qualifier Simple. This qualifier SHALL appear after any other representation term qualifiers.
	NIEM Type Names - Simple Type Components

	9-25
	Within the schema, the name of any code type SHALL use the representation term qualifier Code.
	NIEM Type Names - Code Type Components

	9-26
	Within the schema, any type definition which has a base type definition of a code type or which is transitively based on a code type SHALL have a name that uses the representation term qualifier Code.
	

	9-27
	Within the schema, any association type SHALL have a name that uses the
representation term qualifier Association. Types other than association types
SHALL NOT use the representation term qualifier Association.
	NIEM Type Names - Assocation Type Components

	9-28
	Within the schema, any augmentation type SHALL have a name that uses the
representation term qualifier Augmentation. Types other than augmentation types
SHALL NOT use the representation term qualifier Augmentation.
	NIEM Type Names - Augmentation Type Components

	9-29
	Within the schema, any metadata type SHALL have a name that uses the representation term qualifier Metadata. Types other than metadata types SHALL NOT use the representation term qualifier Metadata.
	NIEM Type Names - Metadata Type Components

	9-30
	Within the schema, the name of any attribute group definition schema component SHALL use the representation term AttributeGroup.
	NIEM Property Names - Attribute Group Names

	9-31
	Within the schema, the name of any reference element SHALL use the representation term suffix Reference.
	NIEM Property Names - Reference Names

	9-32
	Within the schema, the name of an association element SHALL use the representation
term qualifier Association.
	NIEM Property Names - Assocation Names

	9-33
	Within the schema, the name of an augmentation element SHALL use the
representation term Augmentation.
	NIEM Property Names - Augmentation Names

	9-34
	Within the schema, the name of a metadata element SHALL use the representation term Metadata.
	NIEM Property Names - Metadata Names

	9-35
	Within the schema, the name of a role SHALL use the property term RoleOf.
	NIEM Property Names - Role Names

PAGE
1

